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Cubic-quintic solitons in the checkerboard potential
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We introduce a two-dimensional (2D) model which combines a checkerboard potential, alias the Kronig-
Penney (KP) lattice, with the self-focusing cubic and self-defocusing quintic nonlinear terms. The beam-
splitting mechanism and soliton multistability are explored in this setting, following the recently considered 1D
version of the model. Families of single- and multi-peak solitons (in particular, five- and nine-peak species
naturally emerge in the 2D setting) are found in the semi-infinite gap, with both branches of bistable families
being robust against perturbations. For single-peak solitons, the variational approximation (VA) is developed,
providing for a qualitatively correct description of the transition from monostability to the bistability. 2D
solitons found in finite band gaps are unstable. Also constructed are two different species of stable vortex
solitons, arranged as four-peak patterns (“oblique” and “straight” ones). Unlike them, compact “crater-shaped”
vortices are unstable, transforming themselves into randomly walking fundamental beams.
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I. INTRODUCTION AND THE MODEL

A subject which has drawn much attention in nonlinear
optics is the dynamics of spatial solitons (self-trapped
beams) in multichannel systems. The multichannel structure
is defined through an effective periodic transverse potential,
which can be induced by periodic spatial modulation of the
local refractive index. More sophisticated structures may be
built in photonic crystals. A paradigmatic model which de-
scribes the multichannel system in the usual paraxial ap-
proximation (assuming that the transverse size of the chan-
nels is essentially larger than the carrier wavelength) is based
on the generalized nonlinear Schrodinger (NLS) equation for
local amplitude u(z,x,y) of the electromagnetic wave propa-
gating along the z axis in a bulk waveguide with the refrac-
tive index, ng(x,y), subject to the periodic modulation in the
transverse plane (x,y). In the normalized form, the NLS
equation is
du & &
i&—Z+<ﬁ+a—yz>u+n0(x,y)u+5n(|u|2)u=0, (1)
with on(|u|?) a nonlinear correction to the refractive index; in
the case of the ordinary Kerr (cubic) nonlinearity, &n
=n,|ul* (with n,>0). Solitons in the one-dimensional (1D)
version of Eq. (1), with the cubic nonlinear term and the
sinusoidal transverse modulation, ny(x)= € sin(27x/A), were
studied in Ref. [1]; later, the same equation, with u realized
as the wave function of the Bose-Einstein condensate (BEC)
and z replaced by time 7, was considered in Ref. [2] [in that
case, ny(x) represents an optical-lattice potential which traps
the BEC]. Using numerical methods and a variational ap-
proximation (VA), it was shown that the model gives rise to
a family of fundamental (single-peak) solitons, trapped in
local waveguiding channels. The family of the fundamental
solitons exists for all values (0<Q <) of the integral
power, Q= [*7|u(x)|?dx, which is a dynamical invariant of
Eq. (1), and the entire family is stable. Symmetric double-
peak solitons, which may be considered as bound states of
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in-phase fundamental beams,were also found in Ref. [1]. For
fixed period A, the double-peak solitons exist above a certain
minimum value, k.;,, of the propagation constant; attempts
to create double-peak solitons with k<<k,;, result in the
merger of the two peaks into a single one.

Non-Kerr nonlinearities give rise to new effects in the
soliton dynamics, and, accordingly, suggest new possibilities
for potential applications. The simplest nonlinearity in opti-
cal media deviating from the Kerr law combines the self-
focusing cubic term and a self-defocusing quintic one (com-
peting nonlinearities). The cubic-quintic (CQ) dielectric
response was reported in chalcogenide glasses [3] and some
organic optical materials [4] (it is necessary to mention that
the CQ nonlinearity usually comes together with two-photon
absorption [5]; however, it was shown in Ref. [6] that the
nonlinear loss may be negligible for transmission distances
which are sufficient to experiments with spatial solitons [7]).

The interplay of the CQ nonlinearity with the waveguide
structure gives rise to bistability and multistability of soliton
families. A bistable family of fundamental solitons trapped in
a single guiding channel was reported in Ref. [8]. The bista-
bility manifested itself in the appearance of two different
branches of the family, provided that the channel’s depth
exceeded a threshold value. One branch, which continues the
ordinary family of the soliton solutions, features the Q(k)
dependence with dQ/dk>0, hence it is expected to be
stable, according to the Vakhitov-Kolokolov (VK) stability
criterion [9]. The second branch exhibits a decreasing Q(k)
dependence, with dQ/dk<<0; nevertheless, it was found to
be stable too, contrary to the VK criterion (in fact, the va-
lidity of this criterion in models combining the CQ nonlin-
earity and transverse potential has not been proven).

A periodic structure most relevant to optical applications
corresponds not to the above-mentioned sinusoidal effective
potential, but rather to one in the form of a periodic array of
rectangular channels, i.e., the effective potential of the
Kronig-Penney (KP) type [10]. Families of 1D spatial soli-
tons in the model combining the KP waveguiding structure
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FIG. 1. (Color online) A typi-
cal example of the band-gap spec-
trum generated by the variation of
depth V) of the 2D checkerboard
potential with the fixed half-
period, D=3 [see Eq. (3)] in the
i linearized version of Eq. (5).

Bloch bands (where regular soli-
tons cannot exist) are shaded.
Marked segments represent vari-
ous families of fundamental soli-
B tons found in the full nonlinear
model, “flat-top” pertaining to the
family of unstable gap solitons,
see text.
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with the CQ nonlinearity were studied in detail in Ref. [11]
(1D solitons supported by the combination of the KP poten-
tial and cubic nonlinearity were considered in Ref. [12]). In
addition to two coexisting stable branches of the fundamen-
tal solitons, similar to the above-mentioned ones which exist
in the model with the single waveguiding channel [8], fami-
lies of various higher-order solitons are supported by the KP
potential. These include symmetric and antisymmetric
double-peaked ones, two species of three-peaked patterns,
with in-phase or out-of-phase central and side peaks, and
others (in particular, five-peaked structures were found too).
Similar to the fundamental solutions, each family of the mul-
tipeaked solitons features the bistability, i.e., two branches,
with dQ/dk>0 and dQ/dk<<0. All these solution families
were found to be stable, irrespective of the formal compli-
ance with the VK criterion (in Ref. [11], the stability was
verified not only in direct simulations of the evolution of
perturbed solitons, but also through computation of stability
eigenvalues for small perturbations). The difference of the
KP-CQ model from its single-channel counterpart, in which
integral power Q of the fundamental soliton takes all values
from 0 to oo, while higher-order solitons do not exist [8], is
that, in the presence of the periodic KP potential, the single-
. . . (single)
peak soliton exists up to a maximum value, Q =, above
which only multihumped solitons are found. Continuing this
trend, the CQ-nonlinear KP model in one dimension features
a beam-splitting property: solitons with any number of peaks
are stable, but they are found in a finite range of Q; further
increase of the integral power results in consecutive appear-
ance of additional peaks, i.e., subbeams trapped in adjacent
channels of the KP structure, which leads to the change in
the type of the pattern.

Another distinctive feature of the CQ model with the KP
substrate is the band structure of the soliton solutions. Simi-
lar to the models combining the self-focusing Kerr nonlin-
earity and periodic potentials [1,2,12], the solitons are first of
all found in the semi-infinite gap under the bottom of the

Bloch-band structure induced by the periodic potential, while
finite gaps between the Bloch bands remain empty (stable 1D
solitons emerge in the finite band gaps too if the KP potential
is strong enough, although these gap solitons do not feature
bistability). However, in contrast to the model with the cubic
nonlinearity, the band of fundamental-soliton solutions is it-
self finite, being located near the top of the semi-infinite gap,
while its deeper part remains empty. Similar results for soli-
ton families were also demonstrated in Ref. [13] in the model
combining the CQ nonlinearity and the sinusoidal periodic
potential (recently, an equivalent 1D model was derived in
the context of BEC under the combined action of linear and
nonlinear lattices [14]).

It is also relevant to mention that, if the periodic potential
is very strong, it effectively splits the transversely continuous
beam into strongly localized “beamlets,” which are trapped
in individual channels, and are linearly coupled by weak tun-
neling in the transverse direction. In this case, Eq. (1) may be
approximately replaced by the discrete NLS equation. This
approximation was elaborated in detail for the BEC trapped
in a very deep optical lattice [15]. In the case of the CQ
nonlinearity, the same approach leads to the CQ version of
the discrete NLS equation, in which bright solitons were
studied in detail in Ref. [16], and their dark counterparts in
Ref. [17].

In the experiment, 2D spatial solitons supported by lat-
tices have been created by shining beams with extraordinary
polarization into a photorefractive medium (with saturable,
rather than cubic or CQ nonlinearity), where phoronic lat-
tices were induced by a system of properly directed laser
beams that illuminated the sample in the ordinary polariza-
tion (in which the medium is almost linear) [18], see also
reviews [19]. In addition to the fundamental solitons, local-
ized vortices [20], soliton necklaces [21], and solitons sup-
ported by radial photonic lattices [22] have been created by
means of this technique. Also predicted were 2D photore-
fractive solitons that can be supported by the quasi-1D lattice
(which corresponds to a potential periodic in x and indepen-
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dent of y), the advantage of the latter setting being a possi-
bility to simulate collisions between moving solitons [23].

Equation (1) in the 2D form, with the cubic self-focusing
nonlinearity and sinusoidal potential, plays the role of the
Gross-Pitaevskii equation for BEC in the “pancake”-shaped
trap, supplemented with the 2D optical lattice. Stable funda-
mental and vortical solitons in that setting were found in
Refs. [24,25]. In a similar model of photonic-crystal fibers
(with both the refractive index and Kerr coefficient subjected
to the periodic modulation corresponding to a lattice of voids
running parallel to the propagation axis), spatial 2D solitons
[26] and localized vortices [27] were predicted too. The latter
model may also apply to a tightly packed bundle of silica
fibers, which have recently been made available to the ex-
periment [28].

fboard(xay) =

op»—»—l

with m,n=0,1,2,.... Once the form of Eq. (2) is fixed, pa-
rameters D and V|, of the checkerboard potential are irreduc-
ible ones. Integral power

QEJJIu(x,y)Izdxdy (4)

must be added to the set of D and V), as an intrinsic param-
eter of soliton families.

In this work, we aim to analyze, in particular, manifesta-
tions of the above-mentioned beam-splitting mechanism in
the 2D setting, as well as the multistability of 2D spatial
solitons and localized vortices. It is relevant to mention that
the transmission of light beams through checkerboard struc-
tures built of ordinary and meta- (artificial) materials was
considered (in the linear setting) in several works, see, e.g.,
Ref. [29]. The periodic structures were composed of various
elements, such as thombuses, triangles, etc. The 2D periodic
potential of the KP type was also recently considered (but
not in the context of competing nonlinearities) in Ref. [30].

The paper is organized as follows. In Sec. II, we report
analytical results obtained by means of the variational ap-
proximation (VA) for fundamental solitons. The band-gap
structure which is induced, in the linearized equation, by 2D
checkerboard potential (3) is presented in the same section.
Numerical results for the fundamental and multipeak (nonto-
pological) solitons, and comparison with predictions of the
VA, are reported in Sec. III. Stable vortex solitons of two
types (“oblique” and “straight,” either one based on a set of
four local peaks) are presented in Sec. IV, where it is also
shown that the most compact, “crater-shaped,” vortices are

, 2Dm<x<DQ2m+1),
D(2m—-1)<x<2Dm, D2n-1)<y<2Dn,
2Dm <x<D(2m+1), D2n-1)<y<2Dn,
D(2m-1)<x<2Dm,
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The objective of the present work is to construct spatial
solitons and localized vortices in the 2D checkerboard peri-
odic potential (i.e., a 2D generalization of the KP lattice)
with the CQ nonlinearity, the accordingly normalized equa-
tion (1) being

du ( &
I— + )
ax

P
+ — |u+ Vofpoara(X, ) + Qlul* = |u|Hu=0,
0z dy

2)

where the “board” function is defined as a periodic array
(with period 2D) of waveguiding cores of width D, separated
by buffer layers of the same width:

2Dn <y <D(2n+1),

3)

2Dn <y <D(2n+1),

unstable, transforming themselves into nontopological soli-
tons which perform a persistent random walk on the check-
erboard. The paper is concluded by Sec. V.

II. BAND-GAP SPECTRUM AND VARIATIONAL
APPROXIMATION

Stationary soliton solutions to Eq. (2) are looked for in the
usual form, u(x,z)=exp(ikz)R(x,y), where k is a real propa-
gation constant, and function R(x,y) (generally, a complex
one) obeys the equation

N
<_2 + =3 |R+ Vifooua(t.9)R + 2IR[* = [RI)R = kR.
ox~  dy

(5)

Soliton solutions that can be found in this model should be
identified in terms of the location of their propagation con-
stant with respect to the band-gap spectrum of the linearized
version of Eq. (5). A typical example of the spectrum, com-
puted by means of approximating the respective linear op-
erator by a large-size matrix, is displayed in Fig. 1.

For fundamental solitons, function R(x,y) is real. In that
case, aiming to develop the VA in an analytically tractable
form, we decompose the “board potential,” defined by Eq.
(3), into the 2D Fourier series, in which only the two lowest
harmonics are kept (the latter approximation is obviously
relevant when the size of the soliton is much larger than the
lattice period 2D; for more narrow solitons, it may still be
adopted as a reasonable simplification). Further, it is conve-
nient to rotate the coordinate axes by 45° and define
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(6)

Then, Eq. (5) (for real R) with the simplified periodic poten-
tial takes the form of

(% + %)R + g[cos(gé) + cos(gm) R + 2R? — R’ = KR.
7
(7)

Equation (7) can be derived from the Lagrangian, L
=[[Ld&dn, with density

2 2
20 = [(ﬁ) + (§> ]+KR2—8[COS(q77)+COS(6]77)]R2
23 an

1

-R*+ ER(’. (8)

The ansatz for the fundamental soliton is adopted in the or-
dinary Gaussian form [24],

R(&,7m) = A expl[- (a/2)(& + 77)] )

(with a>0). The substitution of the ansatz in Lagrangian
density (8) and integration yield the effective Lagrangian,

2 2 213
g\ _aQ” aQ
2Leff=KQ+aQ_28QeXp(_ 5) —E+ o

(10)

where the total power, defined by Eq. (4) is Q=mA%/a for
ansatz (9).
Lagrangian (10) gives rise to two variational equations,
(?Leff/ (9Q=O, and (?Leff/ é’a=(), i.e.,
2 22
K+a—2sexp<—q—> _@+a Q
4a

=0,
37

- = 4

Q 240> ef’ ( q2>
2ntom 22 P Ty D
Straightforward analysis of Egs. (11) demonstrates that the
limit of Q—o corresponds to a=97/(4Q) and K—K,,
=9/16. Analytical expressions can also be derived from
these equations for coordinates of the furning point (TP) in
dependence Q(K), for those cases when the VA predicts the

bistability, see Fig. 5 below:

45 97 9\ 1 8l7* 1
KTP:___ l+_2 -+ 2_5
64 8 8q QTP 16q QTP

9
80

the respective value of the lattice’s depth being

(12)
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FIG. 2. (Color online) “Low” (a) and “tall” (b) stable fundamen-
tal solitons with equal wave numbers, k=1.8 (it falls in the semi-
infinite gap, whose border is located at k=1.04, in the present case),
and powers Q,=5.46 and Q,=11.52, respectively. The half-period
of the Kronig-Penney potential structure is D=3 (all plots displayed
below also pertain to D=3), and its depth is Vy=2 (other plots are
shown for the same value of V), unless specified otherwise).

7 9) ( - )
= 2atp— T . 13
&rp q2< arp 16 exXp Aarp (13)

The predictions of the VA will be displayed and compared to
numerical findings in the next section.

II1. FUNDAMENTAL AND HIGHER-ORDER SOLITONS

Numerical solutions to Eq. (5) were constructed by means
of the relaxation method. They reveal many species of local-
ized states with k falling in the semi-infinite band gap (see
Fig. 1). Unless the lattice is too shallow (V, too small), all
solution families feature the bistability, with two different
solutions (“tall” and “low” ones) found at a given value of k.
The simplest type of the solutions represents fundamental
(single-peak) solitons. An example of a pair of bistable fun-
damental solitons, whose integral powers differs by a factor
of =2, is displayed in Fig. 2.

With the increase of integral power Q, the beam-splitting
property in the 2D setting manifests itself differently from
the 1D model [11]: when the power of the fundamental beam
attains the largest value up to which the fundamental soliton
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FIG. 3. (Color online) Stable “low” (a) and “tall” (b) five-peak
solitons with the same wave number, k=1.5, which belongs to the
semi-infinite gap; the respective powers are Q,=15.6 and Q,
=28.12.

may exist, the competition of the cubic and quintic nonlin-
earities forces the beam to create extra “humps” not on two
sides of the central peak (as it did in the 1D model), but on
its four sides, along the two diagonals passing through the
center. Thus the next family of 2D localized solutions, after
the single-peak solitons, includes five-peak patterns, and this
family also features the bistability, as shown in Fig. 3.

Following the same scenario, nine-peak bistable localized
patterns naturally emerge in the 2D KP setting with the sub-
sequent increase of O, see an example in Fig. 4. More com-
plex bistable structures were found too, at still larger values
of Q.

The entire family of the fundamental solitons is shown in
Fig. 5(a) by means of curves Q(k), for three characteristic
values of the lattice depth, which correspond to the
monostable family, emerging bistability, and well-
pronounced bistability, respectively. For all three cases, both
the numerically found curves and their counterparts, pre-
dicted by the VA via Egs. (11) and (6), are displayed in Fig.
5(a). Additionally, Fig. 5(b) presents the VA-numerical com-
parison for the turning point in the Q(k) dependence [pro-
vided that this point exists, i.e., the Q(k) curve features the
bistability]. The latter plot collects numerical data not only
for the fundamental solitons, but also for their higher-order
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FIG. 4. (Color online) Stable “low” (a) and “tall” (b) nine-peak
solitons with equal wave numbers, k=1.7, and powers Q,=28.51
and Q,=199.39.

counterparts, as the VA tends to approximate them all by
ansatz (9). It is seen that the VA provides good accuracy only
in shallow lattices; nevertheless, the VA is able to predict the
transition from the monostability to bistability with the in-
crease of the lattice’s depth. Note that the locus of the turn-
ing points is predicted by the VA better than particular Q(k)
characteristics in the deep lattice.

Intervals in which mono- and bistable families of the fun-
damental solitons were found, at V,=0.5 and 2, respectively,
in the semi-infinite gap, are also shown in Fig. 1. The ends of
the intervals are those points beyond which the soliton fami-
lies cannot be extended, cf. Fig. 5(a).

Similar numerically found characteristics for the families
of the five- and nine-peak solutions are shown in Fig. 6; for
the sake of the comparison, the family of the fundamental
solitons (the one found in the numerical form) in included in
this figure too, at the same value of the lattice depth, V,=2.
The picture gives a clear idea of the multistability of various
types of solitons in the 2D CQ model with a sufficiently deep
periodic potential. As well as in Fig. 5(a), all the solution
families displayed in this figure terminate at end points (no
solution could be found beyond those points). It is worthy to
note that, while the five-peak solitons emerge at the maxi-
mum value of Q at which the fundamental beams cease to
exist, in precise compliance with the beam-splitting prin-
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FIG. 5. (Color online) (a) Characteristics Q(k)
(integral power versus the wave number), as pre-
dicted by the variational approximation and
found from the numerical solution (solid and
R dashed lines, respectively), for typical cases of
shallow, intermediate-depth, and relatively deep

(a)

2 Kronig-Penney lattice potential. All the curves
representing the numerical results terminate at
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points beyond which fundamental solitons could
not be found. (b) Comparison between the locus
of the turning points in the Q(k) dependence, pre-
dicted by the variational approximation (solid
curves) and their counterparts (stars), numerically
1 found for both the fundamental and higher-order
solitons (the values of V;, and the type of the cor-
responding solution are indicated in the panel).

0 I I

0.5 1
(b) Ktp

ciple, the family of the nine-peak solitons partly overlaps, in
terms of Q, with the range of five-peak solitons, which gives
rise to the bistability of a different kind, viz., the coexistence
of stable solitons with different numbers of peaks at common
values of the total power (of course, they correspond to dif-
ferent values of k).

1.5

Figures 1, 5, and 6 also clearly show another feature of
the CQ model, which is stipulated by the competition of the
self-focusing and self-defocusing nonlinearities: the solution
families occupy only finite regions in the semi-infinite gap. A
similar feature was reported in the 1D version of the model

[11].

200 S
180[
160(- R

140 N
120

O 100

60 ,

40+ five—peak -

FIG. 6. Numerically obtained power-versus-
wave-number characteristics for the families of
fundamental and higher-order solitons in the re-
1 gion of bistability of each family. The curves rep-
resenting the nine-peak family are disconnected
because of difficulties with finding the respective
1 sophisticated solutions, close to the turning point,
by means of the relaxation method.
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Direct numerical simulations of the evolution of initially
perturbed solitons clearly demonstrate that all the soliton
families found in the semi-infinite band gap, both fundamen-
tal and higher-order ones, are completely stable (the stability
simulations are not displayed here as they do not convey
noteworthy features). As mentioned above in the context of
the 1D counterpart of the present model [8,11], both
branches of the solution families which feature the turning
point are stable, despite the fact that only one branch satisfies
the VK criterion, dQ/dk>0 (i.e., this criterion is not rel-
evant to the CQ model with a waveguiding potential). In the
case when the stable five- and nine-peak solitons coexist, see
Fig. 6, the established pattern depends on the initial condi-
tion: the input in the form of a very broad uniform beam
tends to split into nine peaks, while a more compact beam
gives rise to five peaks.

For sufficiently large values of V,, (deep lattice), solitons
were also found in finite gaps of the band-gap spectrum.
Unlike the fundamental solitons in the semi-infinite band
gap, the finite-gap solitons feature a flat shape in the central
part, and conspicuous tails attached to it along the diagonal
directions, see an example in Fig. 7(a). However, all such
solitons whose stability was tested were found to be un-
stable, see a typical example in Fig. 7(b). This instability is a
drastic difference from finite-gap solitons found in the deep
KP lattice in the 1D model, where they are mostly stable
[11].

The Q(k) characteristics for families of the 2D solitons in
finite band gaps feature no bistability. Those characteristics
are not shown here, but the interval in which the gap solitons
were found in the model at Vy=4 is labeled in Fig. 1 as
“flat-top solitons.” Even though these solitons are unstable, it
is worthy to note that their family is found not only in the
finite band gap, but also extends into the adjacent Bloch
band, inside of which the solitons change their character
from regular to becoming embedded solitons [31].

IV. VORTEX SOLITONS

The 2D model opens the way to find topological solitons
with intrinsic vorticity, which are represented by complex
localized solutions to Eq. (3) with the phase circulation of
2aS around the central point, r=0 (at which the local ampli-
tude vanishes as %), the positive integer S being the topo-
logical charge (vorticity). In the 2D model with the cubic
self-focusing nonlinearity and sinusoidal periodic potential,
examples of stable localized vortices with S=1 were reported
in Refs. [24,25]. Stable higher-order vortices (up to S=6), as
well as multipoles (structured multipeak solitons with zero
net topological charge) and “supervortices” (ringlike chains
of compact vortices, each with individual charge s, and in-
dependent global vorticity S imprinted onto the chain), were
found in Ref. [32].

Here, we focus on the search for vortex-beam solutions
belonging to the semi-infinite gap [vortices were also found
in finite band gaps, but they all appear to be unstable there,
as well as their fundamental-soliton counterparts, see Fig.
7(b)]. First, we have found compact (“crater-shaped”) vortex
solitons, which are trapped, essentially, in a single cell of the

PHYSICAL REVIEW E 76, 066604 (2007)

(a)

(b)

FIG. 7. (Color online) (a) An example of a soliton found inside
a finite band gap (for k=0.6, the soliton’s integral power being Q
=70.9) in a deep lattice, with V,=4. (b) A result of the development
of the instability of this soliton, after passing distance z=35 (which
is tantamount to =9 diffraction lengths of the unperturbed soliton).
The initial random perturbation was imposed with relative ampli-
tude 5%.

KP potential, see Fig. 8(a). However, all vortices of this type
turn out to be unstable (the same conclusion was made in the
model combining the cubic nonlinearity and the sinusoidal
potential [24]; nevertheless, stable supervortices reported in
Ref. [32] were constructed as chains of crater-shaped indi-
vidual vortices, with s==+1, i.e., such individually unstable
objects may build stable complexes, due to their mutual in-
teractions). The instability splits the crater-shaped vortex into
a set of nonsteady fundamental beams, with a single one
surviving in the course of the evolution, as shown in Fig.
8(b). This remaining fundamental (quasi-)soliton performs
random motion across the lattice (keeping its integrity), see
Fig. 8(c), until hitting a border of the integration domain.
This picture also demonstrates the possibility of the motion
of fundamental solitons across the (shallow) KP lattice in
two dimensions.

Two species of stable vortex solitons with S=1 have been
found in the present model. Either one features a set of four
local peaks, with the phase shift of 7/2 between them, which
corresponds to topological charge S=1. The first species,
which may be called “oblique,” as opposite peaks in the
pattern are connected by diagonals of the KP lattice, is dis-

066604-7



DRIBEN et al.

10.5

4.5F B

~10.5 I I I I I I
-10.5 -7.5 -4.5 -1.5 1.5 4.5 7.5 10.5

FIG. 8. (Color online) (a) An unstable compact (“crater-
shaped”) vortex, with S=1, k=0.2, and total power Q=27.68, is
shown by means of the local-power contour plots, |u(x,y)|?, in the
shallow lattice, with V;=0.1. (b) The result of the instability devel-
opment of the compact vortex: spontaneous transformation into a
single-peak quasisoliton, with power Q=11.53, at z=40. (c) The
trajectory of the random walk of the quasisoliton displayed in panel
(b). The total propagation distance corresponding to panel (c)
amounts to ~ 10 diffraction lengths of the walking beam. In this and
the next figure, the grid represents the 2D Kronig-Penney lattice
potential, with half-period D equal to the spacing between lines
forming the grid.

played in Fig. 9(a). It resembles stable vortices reported in
Refs. [24,25], in the above-mentioned model based on the
2D cubic-NLS equation with the sinusoidal lattice potential.
The other species, “straight vortex” (so-called because the
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FIG. 9. (Color online) Examples of two types of stable vortex
solitons (with S=1) in the strong KP lattice (V,=10) are shown by
means of contour plots: (a) an oblique vortex (the one with an
almost empty site at the center), which has k=8 and 0=69.79 and
(b) a more compact straight vortex, with k=9 and Q=7.29.

opposite peaks are connected by lines running parallel to the
lattice bonds), is shown in Fig. 9(b). In previously consid-
ered 2D models combining the cubic nonlinearity and lattice
potentials, this type of stable vortices was not reported, as far
as we know; however, both species of vortex solitons are
known in discrete 2D models, where they are sometimes
called “crosses” and “squares,” respectively [33]. The crucial
distinction between the species is that the oblique vortices
are less densely packed, including a nearly empty lattice site
at the center, while the straight vortex sets its center between
the sites, thus not leaving any internal lattice cell vacant.

Direct simulations (not shown here) confirm that both
vortex-soliton species, the oblique and straight ones, are very
robust to perturbations, and families of these vortices also
feature the bistability. In addition to them, higher-order vor-
tices, with §=2, above-mentioned “supervortices,” and other
types of stable structured multipeak patterns, such as dipoles
and quadrupoles, can be found in the present model. They
will be reported in a systematic form elsewhere.

V. CONCLUSIONS

We have introduced the 2D version of the model combin-
ing the periodic KP (Kronig-Penney) potential, alias the
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checkerboard, and the competing CQ (cubic-quintic) nonlin-
earity. The main objectives of the analysis were to examine
the beam-splitting mechanism and soliton multistability in
this setting, as suggested by the recently studied 1D version
of the KP-CQ model. Families of fundamental and multipeak
higher-order solitons have been found in the semi-infinite
gap, where each family features the bistability, unless the KP
lattice is too shallow. In direct simulations, both branches of
each bistable family are stable against arbitrary perturba-
tions, disobeying the VK (Vakhitov-Kolokolov) criterion.
For fundamental solitons, the VA (variational approximation)
was developed too, which provides a qualitatively correct
description of the soliton families, including the transition
from monostability to the bistability. Solitons in finite band
gaps were also found, but they appear to be unstable. Vortex
solitons, structured as four-peak sets with appropriate phase
shifts, were constructed too. They feature two different types,
oblique and straight ones, both being stable in the semi-

PHYSICAL REVIEW E 76, 066604 (2007)

infinite gap (the latter one was not considered before in con-
tinuous models, although its counterpart is known as a
“square vortex” in discrete lattices). On the contrary to that,
the compact “crater-shaped” vortices are unstable. They
spontaneously transform themselves into nonsteady (but ro-
bust) fundamental beams, which perform a random walk in
the lattice, provided that it is shallow enough.

The solitons and vortices predicted in this work can be
created in optical media which feature the CQ nonlinearity,
such as chalcogenide glasses and some organic materials.
These solitary beams may find applications to the design of
multichannel all-optical data-processing systems.
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